skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zank, Gary P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The temporal variability of magnetopause reconnection is an important aspect of solar wind magnetosphere coupling. Even under stable solar wind driving, reconnection can be triggered, modulated, or suppressed because of magnetic field and plasma conditions near the magnetopause boundary. We analyze a unique event in which a THEMIS satellite crosses the subsolar magnetopause three times within a 5 min interval in the presence of a cold‐ion population on the magnetospheric side of the boundary. During the first crossing, the satellite detects reconnection outflow and a D‐ shaped ion velocity distribution earthward from the boundary, indicating an active reconnection. The signatures disappear during the second crossing when the magnetospheric cold‐ion density increases significantly and reappear during the third crossing when the magnetospheric density drops to a level comparable to that of the first crossing. The solar wind and magnetosheath conditions do not change much during the interval. The magnetospheric population is evidently associated with a plasmaspheric plume with considerable variation in density. According to the theory of mass loading, the presence of such a plume population results in the local Alfvén speed at the second crossing being 40% smaller compared to the first and third crossings. However, the theory itself does not suggest suppression. We discuss possible suppression mechanisms considering the additional effects of the prevailing solar wind and local magnetopause conditions. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Abstract We present a pioneering model of the interaction between the solar wind and the surrounding interstellar medium that includes the possibility of different pressures in directions parallel and perpendicular to the magnetic field. The outer heliosheath region is characterized by a low rate of turbulent scattering that would permit development of pressure anisotropy. The effect is best seen on the interstellar side of the heliopause, where a narrow region develops with an excessive perpendicular pressure resembling a plasma depletion layer typical of planetary magnetospheres. The magnitude of this effect for typical heliospheric conditions is relatively small owing to proton–proton collisions. We show, however, that if the circumstellar medium is warm and tenuous, a much broader anisotropic boundary layer can exist, with a dominant perpendicular pressure in the southern hemisphere and a dominant parallel pressure in the north. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026
  3. Abstract A multispecies energetic particle intensity enhancement event at 1 au is analyzed. We identify this event as a corotating interaction region (CIR) structure that includes a stream interface (SI), a forward-reverse shock pair, and an embedded heliospheric current sheet (HCS). The distinct feature of this CIR event is that (1) the high-energy (>1 MeV) ions show significant flux enhancement at the reverse wave (RW)/shock of the CIR structure, following their passage through the SI and HCS. The flux amplification appears to depend on the energy per nucleon. (2) Electrons in the energy range of 40.5–520 keV are accelerated immediately after passing through the SI and HCS regions, and the flux quickly reaches a peak for low-energy electrons. At the RW, only high-energy electrons (∼520 keV) show significant local flux enhancement. The CIR structure is followed by a fast-forward perpendicular shock driven by a coronal mass ejection (CME), and we observed a significant flux enhancement of low-energy protons and high-energy electrons. Specifically, the 210–330 keV proton and 180–520 keV electron fluxes are enhanced by approximately 2 orders of magnitude. This suggests that the later ICME-driven shock may accelerate particles out of the suprathermal pool. In this paper, we further present that for CIR-accelerated particles, the increase in turbulence power at SI and RWs may be an important factor for the observed flux enhancement in different species. The presence of ion-scale waves near the RW, as indicated by the spectral bump near the proton gyrofrequency, suggests that the resonant wave–particle interaction may act as an efficient energy transferrer between energetic protons and ion-scale waves. 
    more » « less
  4. Abstract We study the solar cycle dependence of various turbulence cascade rates based on the methodology developed by Adhikari et al. that utilizes Kolmogorov phenomenology. This approach is extended to derive the heating rates for an Iroshnikov–Kriachnan (IK) phenomenology. The observed turbulence cascade rates corresponding to the total turbulence energy, fluctuating magnetic energy density, fluctuating kinetic energy, and the normalized cross helicity are derived from WIND spacecraft plasma and magnetometer data from 1995 through 2020. We find that (i) the turbulence cascade rate derived from a Kolmogorov phenomenology and an IK phenomenology changes with solar cycle, such that the cascade rate is largest during solar maximum and smallest during solar minimum; (ii) the turbulence energy Kolmogorov cascade rate increases fromθUB(angle between mean magnetic field and velocity) = 0° to 90° and peaks nearθUB= 90°, and then decreases asθUBtends to 180°; (iii) the 2D turbulence heating rate is larger than the slab heating rate; (iv) the 2D and slab fluctuating magnetic energy density cascade rates are larger than the corresponding cascade rates of the fluctuating kinetic energy; and (v) the total turbulence energy cascade rate is positively correlated with the solar wind speed and temperature and the normalized cross-helicity cascade rate. Finally, we find that the total turbulent energy Kolmogorov cascade rate is larger than the IK cascade rate. 
    more » « less
  5. Abstract The outer heliosphere is profoundly influenced by nonthermal energetic pickup ions (PUIs), which dominate the internal pressure of the solar wind beyond ~10 au, surpassing both solar wind and magnetic pressures. PUIs are formed mostly through charge exchange between interstellar neutral atoms and solar wind ions. This study examines the apparent heating of PUIs in the distant supersonic solar wind before reaching the heliospheric termination shock. New Horizons’ SWAP observations reveal an unexpected PUI temperature change between 2015 and 2020, with a notable bump in PUI temperature. Concurrent observations from the ACE and Wind spacecraft at 1 au indicate a ~50% increase in solar wind dynamic pressure at the end of 2014. Our simulation suggests that the bump observed in the PUI temperature by New Horizons is largely associated with the enhanced solar wind dynamic pressure observed at 1 au. Additional PUI temperature enhancements imply the involvement of other heating mechanisms. Analysis of New Horizons data reveals a correlation between shocks and PUI heating during the declining phase of the solar cycle. Using a PUI-mediated plasma model, we explore shock structures and PUI heating, finding that shocks preferentially heat PUIs over the thermal solar wind in the outer heliosphere. We also show that the broad shock thickness observed by New Horizons is due to the large diffusion coefficient associated with PUIs. Shocks and compression regions in the distant supersonic solar wind lead to elevated PUI temperatures and thus they can increase the production of energetic neutral atoms with large energy. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  6. Abstract We study the radial evolution of the inertial-range solar wind plasma turbulence and its anisotropy in the outer heliosphere. We use magnetic field (B) measurements from the Voyager 2 spacecraft for heliocentric distancesRfrom 1 to 33 au. We find that the perpendicular and trace power spectral densities (PSDs) of the magnetic field ( E B and E B Tr ) still follow a Kolmogorov-like spectrum until 33 au. The parallel magnetic field PSD, E B , transits from a power-law index of −2 to −5/3 as the distance crossesR∼ 10 au. The PSD at frequencies 0.01 Hz <f< 0.2 Hz flattens atR> 20 au, gradually approaching anf−1spectrum, probably due to instrument noise. At 0.002 Hz <f< 0.1 Hz, quasi-parallel propagation dominates at 1 au <R< 7 au, with quasi-perpendicular propagation gradually emerging atR> 5 au. ForR> 7 au, oblique propagation becomes the primary mode of propagation. At smaller frequencies off< 0.01 Hz, E B increases with propagation angle at 1 au <R< 5 au, and in contrast decreases with propagation angle atR> 5 au due to the enhanced power level at propagation angles smaller than 20°. Such enhancement may derive from the injection of wave energy from the pickup ion source into the background turbulent cascade, and the injected wave energy is transferred across scales without leaving local enhancements in E B or E B Tr
    more » « less
  7. Abstract Analytical solutions for 2D and slab turbulence energies in the solar corona are presented, including a derivation of the corresponding correlation lengths, with implications for the proton and electron temperatures in the solar corona. These solutions are derived by solving the transport equations for 2D and slab turbulence energies and their correlation lengths, as well as proton and electron pressures. The solutions assume background profiles for the solar wind speed, solar wind mass density, and Alfvén velocity. Our analytical solutions can be related to those obtained from joint Parker Solar Probe and Solar Orbiter Metis coronagraph observations, as reported in Telloni et al. We find that the solution for 2D turbulence energy in the absence of nonlinear dissipation decreases more slowly compared to the dissipative solution. The solution for slab turbulence energy with no dissipation exhibits a more rapid increase compared to the dissipative solution. The proton heating rate is found to be about 82% of the total plasma heating rate at 6.3R, which gradually decreases with increasing distance, eventually becoming ∼80% of the total plasma heating rate at ∼13R, consistent with that found by Bandyopadhyay et al. (2023). These analytical solutions provide valuable insight for our understanding of turbulence, and its effect on proton and electron heating rates, in the solar corona. We compare the numerically solved turbulent transport equations for the 2D and slab turbulence energies, correlation lengths, and proton and electron pressures with the analytical solutions, finding good agreement between them. 
    more » « less
  8. Abstract We study solar wind turbulence anisotropy in the inertial and energy-containing ranges in the inbound and outbound directions during encounters 1–9 by the Parker Solar Probe (PSP) for distances between ∼21 and 65R. Using the Adhikari et al. approach, we derive theoretical equations to calculate the ratio between the 2D and slab fluctuating magnetic energy, fluctuating kinetic energy, and the outward/inward Elsässer energy in the inertial range. For this, in the energy-containing range, we assume a wavenumberk−1power law. In the inertial range, for the magnetic field fluctuations and the outward/inward Elsässer energy, we consider that (i) both 2D and slab fluctuations follow a power law ofk−5/3, and (ii) the 2D and slab fluctuations follow the power laws withk−5/3andk−3/2, respectively. For the velocity fluctuations, we assume that both the 2D and slab components follow ak−3/2power law. We compare the theoretical results of the variance anisotropy in the inertial range with the derived observational values measured by PSP, and find that the energy density of 2D fluctuations is larger than that of the slab fluctuations. The theoretical variance anisotropy in the inertial range relating to thek−5/3andk−3/2power laws between 2D and slab turbulence exhibits a smaller value in comparison to assuming the same power lawk−5/3between 2D and slab turbulence. Finally, the observed turbulence energy measured by PSP in the energy-containing range is found to be similar to the theoretical result of a nearly incompressible/slab turbulence description. 
    more » « less
  9. Abstract The nature and radial evolution of solar wind electrons in the suprathermal energy range are studied. A wave–particle interaction tensor and a Fokker–Planck Coulomb collision operator are introduced into the kinetic transport equation describing electron collisions and resonant interactions with whistler waves. The diffusion tensor includes diagonal and off-diagonal terms, and the Coulomb collision operator applies to arbitrary electron velocities describing collisions with both background protons and electrons. The background proton and electron densities and temperatures are based on previous turbulence models that mediate the supersonic solar wind. The electron velocity distribution functions and electron heat flux are calculated. Comparison and analysis of the numerical results with analytical solutions and observations in the near-Sun region are made. The numerical results reproduce well the creation of the sunward electron deficit observed in the near-Sun region. The deficit of the electron velocity distribution function below the core Maxwellian fit at low velocities results from Coulomb collisions, and the excess part above the core Maxwellian fit at high velocities is determined by strong wave–particle interactions. 
    more » « less
  10. The distribution of turbulence in the heliosphere remains a mystery, due to the complexity in not only modeling the turbulence transport equations but also identifying the drivers of turbulence that vary with time and spatial location. Beyond the ionization cavity (a few astronomical units (AU) from the Sun), the turbulence is driven predominantly by freshly created pickup ions (PUIs), in contrast to the driving by stream shear and compression. Understanding the source characteristics is necessary to refine turbulence transport models and interpret measurements of turbulence and solar wind temperature in the outer heliosphere. Using a recent latitude-dependent solar wind speed model and the ionization rate of neutral interstellar hydrogen (H), we investigate the temporal and spatial variation in the strength of low-frequency turbulence driven by PUIs from 1998 to 2020. We find that the driving rate is stronger during periods of high solar activity and at lower latitudes in the outer heliosphere. The driving rates for parallel and anti-parallel propagating (relative to the background magnetic field) slab turbulence have different spatial and latitude dependences. The calculated generation rate of turbulence by PUIs is an essential ingredient to investigate the latitude dependence of turbulence in the outer heliosphere, which is important to understand the heating of the distant solar wind and the modulation of cosmic rays. 
    more » « less